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Abstract , r -

For a linearly damped wave equation in a bounded domain in

shown th/ there is a compact attractor in HI x Li as well as in

(Hi ni H) )xH . Similar results are given for the linearly damped beam

equation.
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1. Introduction

Let Y be a Banach space, A be a sectorial operator on Y and let

Yo' be the fractional power spaces of A, YO = Y. Suppose f: y 1/2 _ y is

locally Lipschitzian, 8 > 0 is a constant and consider the equation:

(.1) utt + 28 u, + Au = f(u)

with the initial data (u,u) = (ptf) C X2def Y1 2xY at t = 0. If the

solution (u,ut) is defined for t ?, 0 and T(t)(y,o) = (u,ut), suppose T(t):

X -. X2  is a C°-semigroup.

A set .1 C X2 is said to be invariant under T(t) if T(t)J = J, for

t o 0. A set is maximal compact invariant if it is compact, invariant and

maximal with respect to these properties. An invariant set J in X2  is a

compact attractor for T(t) in X2, if J is maximal compact invariant and

* attracts the bounded sets of X2 ; that is, for any bounded se, B C X2, and

any c > 0, there is a to = to(c,B,J) such that dist (T(t)B,J) < c, if t ) to.

Orbits of points in B approach J uniformly with respect to B.

The semigrcip T(t) is point (compact) (bounded) dissipative if there is a

bounded set B in X2 , that attracts each point (compact set) (bounded set)

of X 2  under T.

Our objective in this paper is to give conditions under which (1.1) has a

compact attractor J in X2  and also prove that J belongs to X =

(Y1 r Y'/ 2 ) x y 1 /2  and is a compact attractor in X1 . The definition of a

compact attractor in X 1  is given in the same way as the one above in X2.

d.
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Applications are given for the linearly damped wave equation and the linearly

damped beam equation.

The following hypotheses are needed:

(HI) A = B2, B-1 compact, *iB generates a C°-semigroup on Y and y1/2,

"e*1B 1 ( k e, t ) 0, on each space and w < 3.

(H2) The nonhomogeneous linear problem:

utt + 2 Bu t + Au = g(t)

(u,ut) It=0 = 0

has the property that

(i) g C Wl,'(O,T;Y) implies (u,ut) C X1 and is continuous in (t,g)

(ii) g C W,"(O,T;Y1/ 2 ) implies (u,ut) belongs to a compact set of X

(H3) Equation (1.1) defines a C°-semigroup on X1 and X2

Theorem 1.1. Suppose hypotheses (HI) - (H3) are satisfied. If T(t) is point

dissipative in X 2 and orbits of bounded sets in X 2 are bounded in X 2, then

there is a compact connected attractor J in X 2. Furthermore, J C X and

J is a compact attractor in X11

It will be clear from the proof of Theorem 1.1 that Hypotheses (HI)

(H3) imply that any invariant set J in X2 belongs to X1.

.- . " , ." - ." " - -N .- .. . . - 4 -. -.* - - - - - . -
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In particular, if ( ) J, then (',,) E D(C), the domain of C, where

C is the generator of the group on X. defined by the linear system

(u t = V, vt = -Au - 20v}

Thus, J C the domain of the generator of T(t). So we have that T(t)IJ

is a Cl-function in t. This implies, for example, that any periodic orbit of

(1.1) must be a Cl-manifold. We do not exploit this fact here since the special

cases of (1.1) to be considered in this paper are actually gradient systems and

no periodic orbits exist.

Let (I be a bounded domain in W with smooth boundary an, 8 > 0

be a constant, A be the Laplacian, g e L2(fl), f e C2 (PDR) and suppose there

is a positive constant c > 0 such that

(1.2) if"(u)I ( c(iui+ll for u -

(1.3) im f(u)/u 0 0
I u I-**

Consider the wave equation

(1.4) [Utt + 20 ut - Au f(u) - g ,in (
I , = , on aO

As an application of Theorem 1.1, we prove

... .. - " • - , ,. ;, - ¢- , ,. .x -- -,-.'. ,. ., ... '..-. .- - -. - .- 5...-.* *.. ". '. .".
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Theorem 1.2. If X2 = 1-(n) x L2(n), X, = (H2(n) r Ho((1)) x Ho(O ) then

equation (1.4) defines a Cj- 1-- semigroup on Xj, j = 1,2. Also, there is a

compact connected attractor J in X 2, J C X, and J is a compact attractor in

x. II
For equation (1.4), Babin and Vishik [2], [3] proved that the set J is a

compact invariant set in XT Since B is bounded in X1  implies cjB is

compact in X2, the assertion of Babin and Vishik is that J attracts these

special compact sets in X2. The assertion in Theorem 1.2 is J attracts in

X2  all bounded sets of X2  and, also i attracts in X1  all bounded sets

of X1. Babin and Vishik show also that J C X1, by a method different

from the one below. They make no remarks about convergence of orbits to J

in X.

If f e C'(RIAR) and there are constants c > 0, 7' > 0 such that

f'(u)[ C(uj 2 "7  1)+

then Haraux [131, Hale [10] proved part (i) of Theorem 1.2. Part (ii) of

Theorem 1.2 seems to be completely new.

Since equation (1.4) will be shown to be a gradient system, one can say

more about the attractor J, as has been observed by Babin and Vishik [2] and

Hale [10]. In fact, if E is the set of equilibrium solutions of (1.4); that is,

E is the set of (yO) e X2 such that

Ay + f(y) - g 0, in C1

u =0 on &Il
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then J = WU(E), the unstable set of E; that is, WU(E) = X2,) 6

T(t)(y,O) can be defined for t ( 0 and T(t)((o,P) -, E, as t -

If, in addition, each equilibrium point (yO) E E is hyperbolic, then

J = U WU(o,0)
(O) E E

where WU(p,0) is the unstable set for (wpO). An equilibrium point (YO) is

hyperbolic if Re X # 0 for every x for which the equation

Au + f'()u = (X2 + 20X)u, in (l

u =0 ,on arl

has a nontrivial solution. Since 0 > 0, this is equivalent to saying that no
eigenvalue of A + f'((p) on X 2 is zero.

For the case where n c IP2, Theorem 1.2 is also valid with condition

(1.2) replaced by:

There are constants c > 0, T > 0 such that

(1.2)' if(u)1 , c( luIT + 1)

If (I C A', Theorem 1.2 is valid with no restrictions of the form (1.2). If

fl C IW, n ) 4, condition (1.2) should be replaced by: there is a constant

c > 0 such that

(1.2)" [f(ku)j l c , for u C F , j = 1,2.

-.
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The proof of the theorem in these cases is essentially the same as the one for

pn nC 3.

Another application of Theorem 1.1, is the Beam equation. Let 0l [0,9],

I> 0, and a,B,K E IR = (0,-), 3 C= R

We consider the equation:

(1.5) Iat2  at 0a a(tKJ[U~ x
u (O) =u 0 , ut(O) U,

with either clamped ends

(1.6) U(0,t) =U(Jt) =u,(0,t) =U.(1t) =0

or hinged ends

(1.7) u(0,t) = U(It) = u,"(0,t) = ux(1,t) = 0

Theorem 1..2 ~=H(Q) x LI(fl), Xc = (H4(fl) n H 2(n)) H 2~(n), xh

(H2 (n) r) H,'(f)) x L 2 (n), Xh = (H 4(f) r) H'(fl)) x (H2 (.0) nl H'(Cl)), then

(i) problem (1.5), (1.6) defines a Cj' 1.-semigroup TC(t) on XC, j-1. 2,

there is a compact, connected, attractor J' for TC(t) in X', YC C

X'and JC is a compact attractor for Tc(t) in X'*

(ii) problem (1.5), (1.7) defines a Ci"-eiru Tj=t on1, ,2,

Xh and jhis a compact attractor for Tht in X

In each case. the attractor is the union of the unstable manifolds of the

equilibrium points, if they are all hyperbolic.
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Ball [4], (51, [61 has discussed the existence of the semigroup defined by

the beam equation in the spaces X , X h and proved that every solution

approaches the set of equilibrium points. The concept of weakly invariant

sets of Dafermos [8] played an important role.

Arstein and Slemrod [1] show that, in the weak topology, each stable

equilibrium point is connected by an orbit to some other equilibrium point.

The connectedness of the attractor implies this result. Our results in the

strong topology of X' (resp. Xh) show that the use of the weak topology is

unnecesary.

The proof of Theorem 1.1 is based on some abstract theorems of Massatt

[20], [21], [221 on dissipative processes. These later results were inspired by

much earlier works of Billotti and LaSalle [7] and Hale, LaSalle and Slemrod

[]I] in the early 1970's.

The proofs of Theorems 1.2 and 1.3 will involve very few technical

estimates on the partial diff erential equations. The estimates that are

necessary involve energy estimates to obtain global existence in X2  and to

show that orbits of bounded sets in X 2 are bounded in X2. We must also

show that the equilibrium set E is bounded.

The other parts of the proofs use elementary properties of linear

hyperbolic equations.



*~ -- -. ~ - -Y. Y~ -A -yu-rwy ywyW1W57VyyJ' . 7Y .'? .- .

2. Summary of results on dissipative processes.

Suppose T(t): X -~ X is a C0-semigroup on the Banach space X.

Also assume that

(2.1) T(t) = S(t) + U(t)

(2.2) ft): X - X linear, C0-semigroup
(2.21[3K > 0, 6 >0 such that IS(t)lX 4 K eBt t 0

(2.3) U(t): X - X is continuous.

The following theorems are adapted from Massatt [20, 21, 221 for the

special case (2.1) - (2.3).

Theorem 2.1. Suppose T(t): X - X satisfies (2.1) - (2.3). If

(i) U(t) is completely continuous for t ) 0.

(ii) T(t) is point dissipative

(iii) orbits of bounded sets in X are bounded.

Then there is a compact attractor J for T(t) in X, which is connected.

The next results deal with the case in which a semigroup may be

defined on two different spaces X1  and X2  as, for example, equations

We suppose abstractly that X1, X2 are Banach spaces and
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(2.4) i: X1 -0 X 2 is a compact embedding

(2.5) X 1  is dense in X.

(2.6) T(t): Xj -. Xj , j=,2 has the decomposition (2.1) and (2.2), (2.3)

are satisfied with X = Xj, j=1,2.

(2.7) U(t): X 2 -. X 1 is continuous and, for any T ) 0 and any B C X 21

for which (U(t)B, 0 4 t ( T) is bounded in X2 , the set (U(t)B,

0 ( t ( T) is bounded in X r

The map U(t): Xj - X. is said to be conditionally completely continuous

if, for any bounded set B in X. for which (U(s)B; 0 ( s ( t} is

bounded, it follows that U(t)B is precompact in X,, j=l,2.

Theorem 2.7. Suppose (2.4) - (2.7) are satisfied. Then

(i) U(t) is conditionally completely continuous in X2

(ii) If T(t) is point dissipative in X2 , then T(t) is bounded

dissipative in X 1

(iii) If U(t): X1  X1  is conditionally completely continuous on X1 , then

any closed bounded invariant set in X2 is a compact invariant set in

Xr

Hypothesis (2.7) together with the fact that X 1  is compactly embedded

in X 2  implies (i) of Theorem 2.2. Conclusions (ii) and (iii) require rather

lengthy proofs. Notice that the conclusions are very strong.

Conclusion (ii) says that orbits of bounded sets in X 1  are bounded in

X 1 and are uniformly attracted in X 1 to a fixed bounded set. Thus, if
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U(t): X1 - X1  is completely continuous, Theorem 2.1 implies that there is a

compact attractor in X1. This result is a consequence only of the point

dissipativeness in X2!

Conclusion (iii) of Theorem 2.2 is a regularity result for t nded

invariant sets; namely, being in X2, is enough to imply they are in XI!

!1

"2.
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3. Proof of Theorem 1.1.

We need the following lemma which is essentially contained in Pazy [23].

Lemma 3.1. If (HI) is satisfied and

* [0 21]
(3.1) C03 1B2 _2

then C03 generates a C0 -group e13 on X2 =y 1 12 x Y and X 1

(yflryl/2) x y1/2 .Furthermore, if

ei Ke 4t 0 in Y and y 1/2

then, for any c > 0, there is a constant K = K(E) such that

(3.2) e =13 S(t) + U1 (t)

- where S(t) e e- t ,W=[

(3.3) IS~t) 1 K e00J13+01, t 0

and U,(t) is completely continuous for t 0.
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Proof. If

d= c U , U = (u1 ,u 2 ),
dt

and

u I = v1 e "13t , u 2 = (v 2 -v) e t , v = (v1 v2)then

dv DSv , D1 [ I , Do = Co.

dt "B2+1 0

For the time being, let us suppose that 1 = 0 and consider the space

X 2 = Y112 x Y. Consider the transformation of variables from Y 1/2 x y to

Y x Y given by

w =v 1 + iB 1 v 2 , w2 =v I - iB-1v2

with the inverse transformation

v = n 1v2 = iB(-w +w
2 ' 2

Define

Dote v e'iBtw(+e iBtw iB (-e'iBtwl +eiBtw 2 )e (vIIv2 ,  2=i
2 2

This is a Co-semigroup on y1/2 x y with generator Do. Furthermore,

D t
(eo0 )1 exists for each t , 0 and is a C°-semigroup of bounded linear

operators with infinitesimal generator -D o. Therefore,

--
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eD0t
,  -~}l

V(t) =e t ) 0, V(t)= t < 0

defines a C°-group on y1/2 x Y (see Pazy [23], p.62). This notation is
Dot

cumbersome and we let e Do= V(t), for all t C: R If we define

S(t) = V(t) W e'-t,

then the estimate (3.3) holds.

Since Da - DO: y1/ 2 x Y - y 1/2 x Y is compact, it follows from S.G.

Krein [17] that D8  defines a Co-group on y1/2 x Y. If we apply the

variation of constants formula to the equation

dw- = Dow + (Da - Do)w,

then

Dote Dot tD a

eDt = e vo + fo De D ( ")(D 8 - DO) e vods
.r~

.1

Since Do - Do is compact, the later integral is compact. Using the fact that
Cat 18 -

e -e W atone completes the proof of the Lemma for the space X2.

The proof for X1 , is similar and, therefore, omitted.

Equation (1.1) can be written as a system

dwdt Caw + F(w)

w ; C8 = ['2 F(w) =
VB 201 f (u

.

16-" "-.--- '.
-~ ' * 4 ~ ' ~ *.**,a"
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or, in integral form

w(t) e etwo + C8 (t-e F(w(s))ds

ptCB(t-5)

For given wo, let U 2(t)WO foJe F(w(s))ds, suppose that B is a

bounded set in X2  such that (w(s), 0 4 s 4 t, w(O) = w 0 CE B) is bounded.

Then, for each w0 C- B, the function u( .,w):[t]-Y' is continuous and

(u(s'w 0 ) , 0 4 s 4 t, w(0) e B) is bounded. Thus, g: [0,t] x B -Y, g(s,w0 )

(u (S w0 )) belongs to Wl-"qO,t];Y). The function U(tw is the solution of

the differential equation

dr 01
dt -CIz +Lgt.)

z(O) =0

From Hypothesis (H2)(i), it follows that the set

(U2(s)B; 0 4 s 4 t)

belongs to a bounded set in X1  and is therefore precompact in X 2. From%

Lemma 3.1, this implies that

T(t) =S(t) + U(t).

where S(t) satisfies (3.3) and U(t) is conditionally completely continuous.
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Since w < 0, we can choose e > 0 so that w - 13 + i < 0. If we

repeat the same argument as above on the space X1, then T(t) satisfies (2.1)

- (2.7) and conditions (i) and (iii) of Theorem 2.1. Now Theorems 2.1. and

2.2 complete the proof of Theorem 1.1.

'.S- *" *- " "* +"+"""""",- . . . "". 
"•"- "i". J".-. ' ' + % .+" . " ." +" + . , ".'

. . .. 
. -+'',.S,..,r. ml. . . ......
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4. Proof of Theorem 1.2. (wave equation).

Equation (1.4) is a special case of (1.1) with Y = L2((1), A = -A. If

A B2 , )n the eigenvalues of A and 'fn  are the normalized

cigenfunctions, then each Xn > 0 and

-- G p L2

n=1

Ao= )2n ( '°n n p E D(A) = H2 
(' H10:

Ay= E X2,y)n, oe D(B) = H1

n=1

B' = : )n I ( (',wn)wCn, i' e L
n=l

If X E p(B), the resolvent set of B, then

(±iB - Xl)no = E (iXn-X) n  ( 1 on)' np, j E L 2

n=1

Using this expressions, one easily sees that B-1 is compact on L2 and, for

any w > 0, X < -w, we have 1(±iB - XI)-L2 X + W-n. Thus, ±iB

generate C°-semigroups on L 2  and, for any w > 0, 1e l1iBt 4 ew t , t 0.

Analogous reasoning shows that ,iB generate C°-semigroups on H 10

with the same bound on e *JBt

If we choose w < 13, then

C= [ 01]

0 1

A -2'11
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generates a C0-group ect on X 2 = 0~ 0i an0 1 -H 2 C ~

and there are constants x > 0,65> 0, such that

(4.1) leCIx, 4 K e-6, t )- 0, j=1,2

Let us write (1.4) abstractly as

dw

(4.2

with fe(T)(x) =f(pf(x)). The variation of constants formula for the initial

value problem for (4.2) is

(4.3) w(t) e ew 0 + U(t)wO

(4.4) UMtWO = ft Ct)[ew5)-ld

To prove Theorem 1.2, we need the following lcmmq whose proof can bc

* found in O.A. Ladyzhenskaya [151, p. 156-165.

Lemma 4.1.

(i) For any h C= L'(0,T;L 2), there is a unique solution W(t,h), 0 4 t T,

in X 2 of the initial value problem:



( ~~dw ro
(4.5 -= Cw +hi h hI

4m.O = 0

Furthermore

(ii) all of the following maps are continuous.:

W [0,T] x L1(0,T;L2) _- = H x,

W [0,T] x Wl"1(0,T;L 2) X. I (H' r) H') H1

*W [0,T] xW" 1'(0,T;Hl) -~(H 
3 r H') x(H 2 n H1)

0 0

By standard application of the Sobolev embedding theorems we can prove

Lemma 4.2.

If (1.2), (1.3) are satisfied, then

H'1H-l L2  is a local C",1 -map

2

fe: H2 f H1 
-. H1  is a local CO-"-map.

0 0

Lemma 4.3.

If (1.2) is satisfied and

lim f(u)/u 0
l ull,-
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then (1.4) defines a C- 1-1-semigroup on Xand X 2. Also, orbits of bounded

*sets in X2are bounded in X 2

Proof. The proof is an application of energy estimates and follows Babin and

Vishik [2]. Under the above assumption on f, one can show (see for example

Henry [141, p. 119) that, for any e > 0 there is a constant c. such that

F(u) e u u2 + cE

F(u) f J f~sd

If (1.2) is satisfied, then there is a constant co > 0 such that

I F(u)I ( CO( I U1' + I) , for all u

For any (y,iP) r X 2, let

= f l2Vf(X) 12 + l/2PX)2 
-F(y(x)) + g(x)y(x)]dx

Then there is a constant c > 0 such that

V(M c[[IT 1 + 101I2 11I
H 0  L

*V(,') ( c[1w,21 + 14)12 2+ 1)

Babin and Vishik 121 show hat a solution w(t,-) =(u(t, .),ut(t,-)) satisfies:
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(4.6) V(u(t,-), u t(t,.)) - V(u(".), u((U,-)) = 2 f J , ua T s,x)dxds.

..

From the inequalities on V(o,O), one easily obtains the global existence of

solutions of (1.4) in X2 and that orbits of bounded sets in X2 are bounded

in X2 . Thus, T(t): X2 
"  X2  is a Cl'-semigroup. If (y, ) E XI then the

solution remains in X1 as long as it exists. But, X, c X2 implies thc

solution exists for all t 0 in X2. Hence, it exists in Xi for all t ) 0

and T(t): X, -. X, is a C 0'-semigroup.

Lemma 4.4. If f satisfies (1.2), (1.3) and U(t) in (4.4) is completely

continuous in X2 , then T(t) is point dissipative in X2 and there is a compact

connected attractor J in X 2.

Proof. For any (y,O) : X2, we know that 71+(y,O) is bounded in X2 . Since

T(t) = ect + U(t), ect satisfies (4.1) and U(t) is completely continuous,

y1+(y,O) is precompact (see, for example, Hale [10]). Furthermore, if (u(t), v(t))

= T(t)(w ,t) and V(u(t), v(t)) = V(u(0), v(O)), for all t C R, then (4.6) implies

that v(t) = 0, for all t C R. Since v(t) = ut(t) this implies that u is an

equilibrium point. Thus (1.4) is a gradient system (see Hale [10], Babin and

. Vishik [21). Therefore, u y,O) C E, for every ((p, ) E X2 where L,(j, 0) is

the u-limit set of (y, 0). To show that T(t) is point dissipative in X 2' we

show that the set E of equilibrium points is bounded if f satisfies (1.2).

(1.3). A point (yO) 6 E if and only if y C H1 and p is an extreme

value of the functional

. . . . . . . . f
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I(wo) -f [i/21 V 12  - F(y)ldx;

that is,

(4.7) f [Vqp VO - f(o)P] = 0, for all 0 E H'
'in 0*

Since f satisfies (1.3), for any E > 0, there is an M > 0 such that

juJ ) M implies f(u)/u ,, e. If y E E, then choosing ' in (4.7) to be y.

we have

fIlVyl2 dx = f(po(x))p(x)dx

= f((o(x>))(x)dx + f'f(,(x))wf(x)dx

where fl = fl n {x:l[p(x)l ) M), n2 = fl (x:l (x)I < M). The first integral is

bounded by Ec(Mn) Iy1 2
1  and the second is bounded by

H2

a constant C(M,J). Thus, 4 H1 C(M,fl) and the set E is bounded.

Therefore, we have proved that T(t) is point dissipative. So by

Theorem 2.1 we get that there is a compact attractor J in X2'

Remark 4.5. If f = C'(R) and there are constants c > 0, -y > 0, such that

If'(u)l < c(lul2-- + 1) for all u, then the Sobolev embedding theorems

imply that fe: H' - L2  is compact. This implies that U(t) is completely0 2

continuous. Thus, the conclusions of Lemma 4.4 are valid. This coincides

with the result obtained by Haraux [13], Hale [10]. The above proof is the

. (,• ,same as the one in Hale [10].

. . . . . . . . . . . . . * ..- w
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Lcmma 4.6. If (1.2) is satisfied, then, for any T > 0, 0 < t ( T, we have:

(i) U(t): X 2 -. X1 , is continuous

(ii) If B and U(t)B, 0 ( t 4 T are bounded in X 2, then U(t)B,

0 , t 4 T, are bounded in X1.

Proof. Suppose B C X2  is bounded. Then, by Lemma 4.3, (T(t)B, t ) 0) is

bounded in X2 . Let T(t)(wp,O) = (u(t,yO), ut(t,y,O)), (y,I) - B, and let

g(t,yO) = fe(u(t,y,O)). Then by Lemma 4.2

g(., ,,) C- W ,I(0,T ;L )

and g(.,y,O) is uniformly bounded for (y,O) e B. Lemma 4.1 implies that

U(t)(y,O) is in X,, is continuous in (t,yO) and is uniformly bounded for

0 ( t 4 T, (y, ) - B.

Proof of Theorem 1.2. We know that (2.4) - (2.6) are satisfied. Furthermore,

Lemma 4.6 implies that (2.7) is satisfied. Theorem 2.2(i) implies that U(t) is

completely continuous in X2* Lemma 4.4 implies that there is a compact

attractor J in X2 .

To prove J is in X and also an attractor in X1, let's first observe

that Theorem 2.2 part (ii) implies that T(t) is bounded dissipative in X1 .

We next observe that U(t) is completely continuous in X 1  To show this,

there is no loss in generality in supposing that f(0) = 0 since we can

replace f(u) by f(u) - f(0) and g by g - f(0) in (1.4). Then U(t) is

completely continuous in X, if and only if:
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l(t)(p,¢) = 2 e 0 (t-)' [ f0 ]dsf0((s))J

is completely continuous in Xi. Let

g(t,yo) = fe(u(tA0,y)) , 0 4 t 4 T.

Since T(t) is a sernigroup on X1 and takes bounded sets into bounded sets,

the function

g( .,p,4) C W1-(0,T;H)

Lemma 4.1 (ii) implies that U(t) takes a bounded set V in X, into a

bounded set in (H3 n HI) x (H2 r) HI). Thus J(t)V is precompact in X1

Now since U(t) is completely continuous in X1 and T(t) is also bounded

dissipative in X 1, theorem 2.1 implies there is a compact attractor J in X r

Since U(t) is completely continuous in X 1 and X 2, Theorem 2.2(ii)

implies the attractor J in X 2  belongs to X1  and is a precompact

invariant set in X,. Thus, J C J. But obviously J C J; that is J = J.

Remark 4.7. Since the solution operator T(t) of (1.4) as well as DT(t)(o,O)

.. are a-contractions the results of Mallet-Paret [18] and Mafie [19] imply that the

limit capacity (and thus the Hansdorf dimension) of J is finite. Similar

results have been given by Ghidaglia and Temam [9].

41

! - .. v**.•.......... ,.- -. . . . .
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Remark 4.8. Since ect is a group on X, it follows that T(t) is also a

group on J. The results in Hale and Scheurle [12] imply that the flow

restricted to the local unstable sets Wu,. (yO) is as smooth in t as the

function f, even up to analyticity. Since T(t) is a group on J and these

sets are finite dimensional, it follows that T(t) J is as smooth in t as

fe.

Remark 4.9. From results of Sola-Morales [26] one can show that J coincides

with the globally defined bounded solutions of (1.3). In fact, replacing t by

-t, one has the radius of the essential spectrum of the corresponding semigroup

outside the unit circle for any t > 0.

............... %****q ~4
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5. Proof of Theorem 1.3.

The beam equation (1.5) may be written as an abstract evolutionary

equation

(5.1) -w = Cw + je(w)
dt

0

gw)x v gfu x)) = 8+ kw e()d~au

or in inega form, 1" U

w*(t)) = g(tw0 ) + ft fC5 ax 2ws)d
00

For a given w0 in either of the spaces V~ or Xi', j=1,2, let

(5.2) U(t)w0 = ft ec(t-) je~w(s))ds
0

To prove Theorem 1.3, we need the following lemmas.

Lemma 5.1. The operator C generates a linear CO-group ct on Xf or ,

j=1,2, and there are constants k > 0, a > 0 such that

I e e0
,C t -O 0
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The proof follows along the lines of the proof of inequality (4.1) using

the results of Ball [4, Sections 3-5], [5, Theorems 3 and 11].

Lemma 5.2.

(i) For any g C L1 (0,T;L 2(fl)) there is a unique solution w,(t,g) (resp.

wh(tg)) 0 4 t 4 T in X' (resp. Xh) of the initial value problem

dw

I dt [g
(5.3)

-Jw o  0

(ii) Furthermore, all of the following maps are continuous

O. clamped ends:

a. w : [0,T] x LI(0,T;L2 ) -. H2 x L2 = Xc

0'2. w : [0,T] x W,(0,'T;L2) - (Hg n H 4) x H2 =X

ix3. w : [0,T] x W1 '(o,T;Ho) -. (H 2 n H 5) x (H 2 r H3 )

13. hinged ends.

% .3 Wh: [0,T] x L 1(O,T;L 2) (H1 r) H2 ) x H2 = X

02. Wh: [0,T] x W,'(0,T;L2) -, (H' n1 H4) x (Hj ('1 H- 2 ) X h

03. Wh: [0,T] x W"'1 (0,T;H 2 n H') - (HI n H') x (H' r) Hs).
h0

. . . . . . . . .
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Assertion (i) follows by ([15], Theorem 3.1, 3.2 p.157-161) and ([4],

Theorem 4.1, p.119).

Let us now prove (ii) under the condition of clamped ends. Let

= d/dt, "" = d/dx and let wC be the solution of the linear

nonhomogeneous equation

(5.4) + 6 * + aw" = g(t,x).

Suppose that g E L1(O,T;L 2 ). Multiplying (5.3) by we, we obtain

1w 122 + fd w 12 + a I 2

C OL 2 2 a L2 (g(t'x),w )L2 .

Integrating over t in [0,T], T e [0,T], we obtain

f(Wc12 + alw" 12 )dt + k jw~ L2

f g 12  + -I V I 2 2 lw C(O)12

Thus,

fTI 12W2IL + al w 12 
2 dt + kIW' 2  , 1 g12  +

where k1 , E 1, 2 depend only on T. From here, it follows that wC = HO,

C L2 and the mapping is continuous.

To prove the assertion in (ii)( ), differentiate (5.4) in t and substitute

uf Wv to obtain
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i+ SfC + auc 9 (t,x)

From the proof of (ii)(a,) (uCtc) C- H 2 x L2. Thus, (Wvc,i) E H2 x L 2.

From (5.4), wC E H4. Since part (ii)(a,) implies wC C Ho, we have

(We,) - (H2(l-H4) x H2. The continuity of w. is obtained as before.

To prove (ii)(oc), let w = wc and first differentiate with respect to x

to obtain

(5.5) Wttx + swtx + aw(5) = gx

If u = wx, then

Utt + But + au (4) = gx

From the proof of (ii)(a), we have (u,ii) - H2 L2  and so

00(W, Wtx e H2 x L2; that is, w G H3 0 Ho2 and wt C- L 2 with these

functions being continuous in g.

For the next step, we differentiate (5.4) with respect to x and t, let

u = Wxt and observe that u satisfies

utt + But + au (4) gxt

Thus, as before, (u,u) E H x L2  and (Wxt,Wxtt) E Ho x L2 . This implies that
h0

w6 - H3 n H2. From (5.5) and the fact that w - L2 , we have w (5) C L2 .

From (ii)(c), we know that w 6 H4 A Ho2. Thus, w E H5 r H. This

completes the proof of part (ii). An analogous proof can be given for (ii)(3)

and is omitted.

..

a%
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Lemma 5.3. For the map

gc(u) = (13 + klu' I 2)u"

we have the following:

(a) (clamped ends)

a,) gC: H2 - L2  is a local Cl'-map.

a2) gc: H4 n H2 - H2 is a local C0 '1-map.

(b) (hinged ends)

ge: H2 n H1 - L2  is a local C1,1-map

ge: H4 n H1 - H2 r) H1  is a local C0 1-map.

Proof. We'll prove the lemma for case (a). The case (b) is similar.

a,) (i) We prove first that ge: Hg - L2.

Since u E HO, we have

lUl 2 < C1, Iu'12 < C, lu" 2 < cS.

So

I e(U)1 2 - 1(1 + klu' 12)U 12

(2 192c3 + 2kc2 c ge(u) C L .
3 2 3 eu 2

(ii) We now prove g is continuous:

Let un, u - Hg, with un - u in Ho. i.e.

HUn U112H n--0 0
0
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We have:

Ige(uo) - ge(u) IL2

= I(0 + klu.l2)u-(8 + kU' 12)u"I

10(u" - u") + k(I"nI 'n 1u112 u")l

l4 11 lu -u"I + k Ilu.i2 - u11II I U" i+ " -ull U 'l 2

' k1 lU - Ul 2
UHO

for some constant kr, This proves the continuity.

(iii) We next prove that ge is differentiable.

g (u)v --Jim O[ (B + kl(u + fv)'j2) (u + ev)" - (03 + kIu '12)U

lim -[ 8 u + EOv + klu I u'' + k cIVI
E 40

+ 2Ek I u V u it + k cEll 12 V" + e klu I V + 2ke ,Uv IV

- u klu' v" + 2 kIvu" + k lu v i

( (8+ kluh12) v" + 2klu'v' lul.

(iv) Finally, we show that (ge)' is Lipschitz.

19 (udv - g'(u 2)vI

kI2Iuv 'u" + lul 2V. 2 1uIv IIu -lu 1u12v

.- .-, -, ,-, ,,..',',,,." .. , '. ,', -,. .,, . ,, .• -, ..S•.. . - . .. .-.. .... , . ..,.., . . ,
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II I I II 

Sk1v" I [N , - U2 ' + -, ul 'I + 2 U21 2U "1 '2]

k~~v I 2 +I12+!U1 2+I"2

"< lv~ [l, " 12l + I 2 ul + lU" u UI1]

This implies that (gc)' is Lipschitz.

a2 ) It's an immediate consequence of Ball ([4], p. 136, Lemma 6.2).

Lemma 5.4. The equation (1.5), (1.6) (resp. (1.5, (1.7)) defines a CJ' -semigroup

T(t) on X', X' (resp. Xhx) Also, orbits of bounded sets in X- (resp.

in X h) are bounded in X' (resp. Xh).

Proof. The existence of a local C1,'-semigroup T(t) on X' (resp. X h)

follows from Lemma 5.3 and Segal [251 (see also Ball [4] p.119), where

T(t)(9,0) = w(t,y,O), the solution through (,,O). Moreover, the solution w(t) =

w(t,y,) in both cases, satisfies the energy equation:

(5.6) V(w(t)) + &ft u(s)12ds = V(O)

where

V(w(t)) 1- j i(t)12  a. I lU"(t) 12 + ju (t-1 + L I (t) 1

is the energy function.
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A formal calculation shows that the following inequalities are true:

(5.7) V(w(t)) ) *jjiW(t)jI1 _ 0S2/2k)

(5.8) V(w(t)) 4 *(l + At~ IIWI12 + k 4 114

Using (5.6), (5.7) and (5.8), one easily obtains

IIw(t)112  W + (I +r 13 )Iwoll 2 + 2L 1 1w 0114

From here we deduce the global existence of solutions of (1.5) in X' (resp.

X)and that orbits of bounded sets in Xc (resp. X)are bounded in X

(resp. X h.

Hence T(t) : X1 X1 (resp. 2h - ) is a C1"1-semigroup. If

(u0,uj) e- X' (resp. X h), then twe solution remains in X' (resp. X h) as long

as it exists. But X'C X' (resp. Xh C Xh) implies the solution exists for

all t ) 0 in Xc (resp. Xh) . Thus it exists in X1 (resp. Xh) for all

t ) 0. Therefore T(t) : X X (resp. Xh - Xh is a o'smgup

For a given (w,@) 6e V (resp. Xh), j=1 ,2, let T(t)(,O) = (u(t), v(t))

4.where (u(t),v(t)) is the solution of (5.1) through (y,OP). Also, define

U(t)(wf,) by (5.2).

Lemma 5.5. If U(t) is completely continuous in X' (resp. X h), then T(t)

is point dissipative and there is a compact connected attractor in X' (resp.

X h).
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Proof. The proof is similar to the proof of Lemma 4.4 and is therefore

omitted.

Lemma 5.6. For any T > 0, 0 t ( T, we have

(i) U(t) X 2 - X' (resp. X _ Xh)

(ii) if B and U(t)B, 0 ( t ( T, are bounded in X' (resp. Xh),

then U(t)B, 0 4 t ( T, are bounded in X, (resp. Xh).

The proof is essentially the same as the proof of Lemma 4.6 and is

therefore omitted. The same remark applies to the remainder of the proof of

the first two parts of Theorem 1.3 on the existence of the compact attractor.

To show that the attractor has the form stated in part (iii) of Theorem

1.3, we need to show only that the energy function V(w(t)) defines a

Liapunov functional in the space X' (resp. Xh) (for a definition, see [10]).

From (5.6) and, for a sufficiently smooth dense set of initial data, we obtain

(5.9) V(w(t)) = -f u2dx 0
0

This implies that V(w(t)x) is nonincreasing in t for each x in X2

(resp. Xh).

From (5.7), we have V(x) -' *, as x - + *. Also, V(x) is bounded

* - below. Furthermore, if V(w(t)x) = V(x) = V(w(0)x) for all t in R, then,

by (5.9), we have 6 fo (t,x)2dx 0, for t C R. Thus, u(t,x) =_ 0 for

t e R and u(t,x) u(0,x) for t E R. That is, u is an equilibrium point

of (5.1). Hence, V is a Liapunov function for (5.1) in the space X' (resp.

X).

2.....'.......................
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Remark 5.7. The equilibrium states of the beam equation have been studied

by, for example (Reiss [24], Ball [4], [5]). The set Ec (resp. Eh) of

equilibrium points of (1.5), (1.6) (resp. (1.5), (1.7)) consists of the points (u,0)

E XC (resp. Xh) such that:
22'

filll ) l
(5.10) a u = (S + klu i2 )u

subject to the clamped (resp. hinged) boundary conditions. Any non zero

equilibrium point v. is an eigenfunction satisfying:

av. + Xv = 0

subject to the relevant boundary conditions, where,

Ivl- k

The positive sequence {Xj)} is strictly increasing and has no finite

accumulation point.

So, if -13 X1. the only equilibrium point is v = 0, while if

Xn < -0 X Xn+1 there are 2n + 1 equilibrium points given by

v =0 and v -vm, 1 . m < n.

Hence the set of equilibrium points for either boundary condition is finite.

". . '' -* . . . . -
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Postscript

After this paper was written, the authors became aware of some related

and, in some cases, more general, results of 0. Lopes and S.S. Ceron. [Existence

of forced periodic solutions of dissipative hyperbolic equations and systems.

Annali di Mat. Pura Applicata, submitted]. In this paper, Lopes and Ceron

were concerned with nonautonomous evolutionary equations which were

periodic in time. We summarize their results for the autonomous case and

relate them to those stated above. Let (I be a bounded subset of R3.

Consider the equation

(1) utt + h(ut) - Au = f(uj in n1

u = 0 , on

where h(v) satisfies h E C'(R,R), h(O) f 0 and there exist positive

constants 3 1 a > 0 such that

0 < a 4 h'(v) 4 8.

. Also, suppose that f E C1 (R,R), If'(u)I 4 c(IuI2' 7 + 1) for some positive

constants c,7 and Jf, uf(u) are bounded below for u C R. Lopes and

Ceron proved that the solution operator T(t): HoI x L2 - Ho x L2  is an

a-contraction and the system is bounded dissipative. Thus, there is a compact

attractor for (1) in H' x L 2  from Theorem 2.1. This improves on the result

'4
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of Haraux [13], Hale [10] by allowing a nonlinear damping term h(ut). The

result of Lopes and Ceron does not include part (i) of Theorem 1.2 since he

assumes the stronger growth rate on f(u).

For the beam equation and the damping term But replaced by h(u t )

with h satisfying the conditions above, the results of Lopes and Ceron imply

part (i) of Theorem 1.3.
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